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ON THE UPPER AND LOWER CLASSES FOR STAT-
IONARY GAUSSIAN RANDOM FIELDS ON ABELIAN
GROUPS WITH A REGULARLY VARYING ENTROPY'

BY J. M. P. ALBIN

Center for Stochastic Processes and University of Lund
We give a complete and relatively explicit characterization of the upper

and lower classes for a general stationary Gaussian random field.

1. Introduction. We shall assume that our probability space (f2, _F, P)
is complete and that {W(t)}tET is an R-valued separable stochastically
continuous standardized Gaussian random field on a pseudo-metric un-
bounded space (T, p) equipped with an abelian group-operation + such
that the covarianAce r(s,t) -E{ (s) (t)} satisfies r(s+u,t+u) = r(s,t)
for s, t, u E T and whose bounded subsets are totally bounded in the
cannonical pseudo-metric d(s, t) [E{( (t) - (s))2 }]1/2. We also define
the entropy Ns(e) as the minimum number of closed d-balls O, of radius
e needed to cover SC T and Ms(,) as the lacgest n for which there exist
ti,. . . ,tn E S satisfying d(ti,tj) > e for each i54j, and we write Po{S}
- sup{P{B} : SDBE F}, P*{S} -inf{P{B} : SCBE F}, 4 for the
standard Gaussian d.f., 4-1- 0.0oo=0, Sp(t,e) = {sET: p(s,t)<e},
S(t,E) = {sET: d(s,t):6} and a(t,e) = sup{OVr(s,t): seT-Sp(t,e)}.

In view of recent tight tail-estimates for local suprema (over d-compact
sets) of general Gaussian random fields (cf. e.g., [1], [2], [3], [16] and
[21]), it seems motivated to study also the global behaviour of suprema. Accesior For

Here the only tractable approach seems to be upper and lower classes:
Let T1 be the class of functions i:T-* [-oo, oo]. Provided that a(t, A) NTIS CRA&I

0 not too slowly as A--+ co we prove a zero-one law for the sets DTIC TAB 0
Unannounced

E(O) -{wEJ2 : the set {tET: (w;t)> 0(t)} is p-unbounded}, 0 E T1. Justiication

We also give an explicit characterization of when the different values for BY
P{E(b)} occur, i.e., we determine the upper and lower classes for (t). DistributlonI

Related work are e.g., [5], [6], [10], [13], [14], [15], [17], [19] and [20]. d

2. Main result. Our main result is the following theorem.. .
SA , i. , 'or

THEOREM 1. Assume that there exists an RE (0, V/2) such that D,-l

(2.1) limlo No,(xe)/NoR(e) < oo for some xE(0, 1),
1 Supported by Air Force Office of Scientific Research Contract No. F49620 85C .... _

0144 and by Kungliga Fysiografiska Sillskapet.
AMS 1980 subject classifications. Primary 60F15, 60F20, 60G10, 60G15, 60G17.
Key words and phrases. Upper and lower classes, LIL, Gaussian random fields.

Typeset by AA4--TEX



and such that to each C > 0 and s E T there exists an increasing sequence
{e,(n) =o, with s(0)=0 and lim,.-. e(n)=oo for s ET, satisfying

(2.2) sup Z Ns,(s,g.(n+l))(R)exp{-C/a(s, o,(n))} < 00.
sET n>0(,p,(n))>o}

Then E(V) E Y with P { E(k)} zero or one for each V) E T and moreover

(2.3) P{E(b)}= 0 <= ENoIn((1Viinf 0(t))' ) (1Vinf 0(.)) < o

for some covering S =S(tn,rn), n-1,2,..., of T with rn R for all n.

REMARK 1. Note that, by (2.2), given e >0 and to E T, r(t, to) <e for
p(t, to) > k and k large, which yields S(to, V/r -e))C S:(c, k). Thus
06 is d-totally bounded for 5 < v2 so that (2.1) makes sense and each
covering {S(tn,rn)} of T with rn <R is infinite.

PROOF: : We have, for e <6 <R/3, (since Ns(e)< _Ms(e)< _Ns(E/2)),

NoR13 +6+e (e/2) No.(e12)

o 6 ( ) _ No6 (e/2) Mo, 3 (25+2,) <_ No(46)/No(R/3)'

and this inequality trivially extends to e < 6 < R. Writing 1 for the sinai-
less integer having x -1 > 8/e and K 1 = sup,> 0 No,(xe)/NoR(e) (< 00

by (2.1)), we readily get K1 <K,(8b/e) - lo g K/logz, and thus

(2.4) Mo (e) <No6 (e/2) : NoR (R/3) [I-' NoR ( 4 6xk+1 )/No, ( 4 6xk)

< KINo(R3)(8b/e)- log K / log z for e<6<R.

Now, by (2.4), lim~ologlogNoR(e)/log(1f) = 0 so {W(t)}tEoR has
an a.s. bounded version; cf. [7], [8] and [18]. Since Ns,(to,6)(R)< 00 for
t0 ,E T, 6>0, p-separability yields that {W(t)}tES,(fo,6) is a.s. bounded so

E{suptEs,(to, 6)(t) 2 } _ 2E{ (supts,(o,6) (t)) 2 } < o;

cf. [8], [91 and [11]. Since (t) is stochastically continuous we get
d(t, to)2 < e2 + fG( (t)-(to))2dP < e2 + 4 fG suptES(to, 6 ) (t) dP -* 2

as p(t, to)--O, where G, {w E : 1k(w;t)- (w;to)I>e}, so d(t, to)-O
as p(t, to)- 0. Hence d-opens are p-open and so {W(t)}tET is d-separable.
In view of (t):s (trivial) d-stochastic continuity it follows readily that
any countable d-dense subset of 0 , is a separator for {(t)}tEo,.

Take ao = min{(1-zx/ 2 )1/ 2 /4, R/2} and t E T, let Co = {t} and let
C,, be a (a/u)x"-net in S(t,a/u) with d(s,,S2)> (a/u)xn for C E s, 3
s2 E C,,, so #C. < Mo./.((a/u)x"). Write pn =(1-X1/2)x(n-)/2 and
C = U'n=oCn and choose tn(S) E Cn with d(tn(s), s) < (a/u)xn for s E C.
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Then c(s) = (t)+ZEN.[( 7 ())~t..is) for some N for each sE C.
Adapting [4, the proof of Theorem 6] to the present context we get

N

SU {( 7 ()-( 7 i))>Pn/U, W(t1(s) >U, 0(71..1(S)) u+1/u}.

Thus, since d(t7 1(S), t7 1 .I(S)) <5 d(t 1(S), s)+d(s, tn1..I(s)) <5 2(a/u)X(n-1),

(2.5) P{5UPSES(t,a/L) a(s)> u+ /u, (t) u}

-P{USEC{MS)>u+1/u}, ~t) u}

n1=1 YECn-I. s2ECnflS(sI ,2(a,/u)z'n-1)

Now take a E (0, aoI and u >1 so that r(s 1, S2) = I -d(s 1,52 ) 2 /2 >
1 -2(a/u) 2 > 1/2 for d(s1 , S2 ) : 2(a/u)Xn-1, which yields

(r~i I2 _ 1) (sj) = d(SI, S2 )2  (i) 4(a/u )2 X2 (- 1 )2u < P7 /(2u)

for (sj) 5u±+1/u. Hence we have, for d(sl, S2) 2(a/u)Xn- 1 ,

(2.6) P{j(Sz)- (SI)>Pn/U, (S2) !U, (Si) u±1/U}

Combining (2.4)-(2.6) we conclude that, uniformly for u >1, as a 10,

(2.7) C(uYIP ISUPIES(t,a/u) 0~S) > U+ 1/u, 0()5 U I}

00 )nI) ) 1X

:5F Mo, ((a/u x~)M02auz- 1(/ 4P

2N 200 /1-ogjIoz 3 1X/2
5K IoR (R13) E (128xn~~1I~z(() 2  o(a).

Arguing as for (2.5) for tqu(s) =-2u±1/u- (s) we deduce for future
use that, by (2.4), (2.6) and symmetry, jjniformly for u >1, as a 10,

= E(u)-'PISUPSES(,au) ?u(S)> u+1/u, i7u(t) <U)

3



n=1 sCC,.- s2 ECnS(si,2(a/U)z "- 1 )

Pj1#,u(S2)-r#,,(Sl) >p./u, ,#,,(S2)>U ur,(S1) <_u+l/u)

c(u) -' I E E
n=i alEOn I 82E~nnlS(st,l(a/u)xn - i )

P{(Sl)-,(S2)>p,/u, (S,)>U, (S2)<u+1/u} = o(a).

In order to proceed we observe that, by (2.4), for a< 1 and 6< R,
No Yo(ae)/Yo (e.): No g (ae)5 Ki Nlo.(R/3)(8/a)- log K, /l109 , C < R,

No6 (ae) < NoR(aR) < K1 Noj (R/3)(8/a)-log K1 /log No, (C), C > R.

Further u-2/u-=i > 1u > 1 for u > 2, so that i+1/ii < u, and i(fi) <
I 0(ii) < <e2¢(u) :_ e24(u), where 0(u)=(2r) - 1/ 2 exp{-u 2 /2}. Now

P{SUPsES(t,a/u)C(S) > u+ l /u,(t) W  u} < _(u) for u>1

for some sufficiently small a E (0, aol (cf. (2.7)). Hence we conclude

P1 sp Cs) +5 ,,,a~u[Pj SUP C(s) >u, ~t) ti}jP t)f
) } a){sES(t,a/u)

< No(a/u)[P{ sup C(s)>i+ 1/u, (t):5 il} +c
aES(t,alfi)

L_ e2K1 No,(R/3)(8/a)- log K'/ log N0(u) (u)

for u> 2, 6 < R, so, with K 2 = Le 2glNoR(R/3)(8/a)- log K / log /!(2),

(2.9) P Isup C(s)>u}<K 2No6 (1(1Vu))!(1Vu) for 6<R and all u,
sE06

Assume that the sum (2.3) is finite for a covering {Sn} = {S(tn, r.)}
of T with rn <R. Taking m = sup{p(tI, ta) : 1 < n < J} where

n=°J NC.((1 Vinftes.P(t))-l) 4(1 VinftES ¢(t)) < e/K 2 ,

completeness yields that E() E F with P { E(k) I = 0 since, by (2.9),

Po{E(Vk)1 < P*{(t) >tk(t), for some tET with p(ti,t) >m+R}

< P{ UIn:p(t1 ,tn)>M,} {(t)> inf.esn O(s), for some t E Sn}}

<K2 EN n(lV inf 7P(t))!(1 V inf (t)<E
n=J tESn tES,

F Write (Sn" ( 1 ; 0) for the sum (2.3) and assume that "({S 7 }; S k)=
oo for each covering Sn=S(tn,rn), n=1,2,..., of T with r, <R.

4



Taking to E T and 2< u1  < U2... with P{SUPtES,(to,n) (t) > un} <

n - 2 (recall that {(t)}Es,(t,,n) is a.s. bounded), the function 0*(t)=u1
for tESp(to, 1) and 0*(t)=u for tESp(to,n)-Sp(to,n-1), n>2, has

P°{E(k*)} < lim-.... PO{(t)>0*(t), for some tET-Sp(to,n)} = 0.

Clearly P.{AUB} < P*{A}+P.{B} so that P.{E(4,A4*)} = Po{E(O)
UE(k*)} < Po{E(V)} and so, by completeness, it suffices to prove that

(2.10) V(t) = (V(t)Ao*(t))V2 has Po{E(W)} = 1.

Take a (p/u)-net {s,}' in 06 with d(si,si)>p/u for si 0$sj. Since

(2.11) MO6Ak,l)(P/u)= Mo 6A(,)((26)A(p/u))

<_KNoR(R/3)(8 )log

<_KINoR(R/3)(8k)- log K(/log x for 6<R, k>l

(again using (2.4)), and since, by arguing as for [5, Eq. 2.16], for x, y > 0,

(2.12) P{ (s)> x,(t)>y} < _( d(s,t)x) _(y)+_( d(s, t)y)_(x)

for all values of r(s, t) (although [5] only treat 0< r(s, t) < 1), we obtain
11; j { (si) >u, (sj) > u

, [2bu/p]<_ (u) E ] E !E(d(sj, sj)u )

i=1 k=l l{<j<n:kp/u<d(si,sj)((k+l)p/u)

2n (u)Kl NOR (R13) E (8(k +l)) - 'Og KI / log z(Q-kp) n -P(u)

k=1

for u > 0, 6 < R and for some p> 1 (not depending on 6). Since, by (2.4),

No(1/u) < Nod^(P,.)(6A(1/u))Nos(6A(p/u))

< K1 NoR(R/3)(8p)-logK'/lo zn for 6<R

we conclude, taking K 3 = K - ' NoR (R/3)- (8p)log K, / log

(2.13) P{suPtEoX(t)>u} > P{sup,< i<,, (si)>u}

> n (u) - Ii4jP{(si)>u, (sj)>u}

> K3 No,(1/u)f(u) for u>0 and 6<R.

Now, combining (2.9) and (2.13) we get, for each choice of {S,},

(2.14) K 2 Z({S,;1; (P) ! E P{ sup S(t)> inf V(t)
n=1 tESn tESn



_cfsp t)>i )t A0*tjP sup (t) > 2n =1 tESn tES

> K 3 1 (2) E({S1; 0) = 00.

Let rt = sup{r > 0 : r inffES(t,r) p(s) < a} for a E (0, 1], t E T, so that
a/*(t) rt < a/2. Taking 6 kTrt with bk inf8Es(t ,) 6)(s)< a we get

a/(infEs(t,r,) (P(s))> lim a/(infEs(t,6k) V,(s))> lim k =rt,
(k --oo k-oo

a/(infsEs(t,r,) W(s)) <im a/(infSEs(t,r,+,) p(s)) _lim rt +6 = rt.

Ordering S {A C T: A E s # t E A = d(s, t) > rArt} partially by
A<B # ACB, a chain {A,}CS has upper bound U{A,} so that, by
Zorn's Lemma, S has a maximal element C. Here C:s maximality readily
yields UtEC St = T, where St = S(t, rt). Further, since #CfnSp(to, n) <
Ms, (to,,)(a/un)<o, we have #C <No and, by (2.14), -({St}; k) =00.
Writing cpt=infEs, p(s) we therefore obtain, by (2.4) and (2.15),
(2.16) Z- (c (t) > K8/a, / K1 log z 00°= .

EtER(R/3) Zt!cKsC'VCR)(R13)

Now let *=Wt+l/t, Jt =- 1w E J? : .(w;t)> ', infsEs, '(w;s)>cPt}
and CN = {tECm<p(to,t)<N}. Letting It "indicate" Jt we get

(2.17) Po{E( p)} = Po{ n U U { (;s)> p(s), for some sESt}

- =m tECMN

_!P n U I{EtECNt> 0}
m=1 N----M

> m lira [1+VarI 1 t}/(E{ It}) 2 ]-1,
rn-cc N-cctCC tEC N

where we used Hlder's inequality as in [5]. Now write

= P{. (s)>c, (t)> }-P{(s)>}P{ (t)>v'} for s,tEC

and note that, by arguing as above, 4(pt') > le-4(Vt) so that, by (2.8),

E{It} = !_(')-P{I(t) > , inf,1s, (s) < } > e--_(p,) for t EC

and a < a,, for some al E (0, R] (not depending on t). Since, by (2.8),

Var{Z-EcN It} + [gs +2 ( 's)P{(t)> V*, infves, (v)< t}1

,t EC|

=seelsCN ]) + (a)(tECN tis ce

(see also [.5]), (2.16) and (2.17) combines to show that it suffices to prove
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(2.18) im. .o limN!ft(tEC Ps,t)/(tEc c())2 < 0 for a<a,.

Now, given an integer k > 1, partition Cg x CN into

C', ,1 d(s,t)>R, 0<r(s,t) -l • 2 •

k,2 = + {W t) r + - },
Cm,N (s, t) d(s, t)> R, r(s, t)> k-l[()2 () 2 1' },

{(St) 0 <d(s,t)<R, r(s,t)>0, 1 pa5p3 2p,
C4,N {(s,t) O<d(s,t) R, r(s,t)>0, pt >2 s or p,>2p},

.,N -{(s,t) d(s,t)>O, r(s,t)<0},
c6c.,N = (St): S=t}.

Arguing as for [5, Eq. 2.12] we then readily get

e1/(2k) ¢(3 c1 ) 16 el/( 2k) t(q)() for (s,t)eC'k, 1
(2.19) I.,t< v Rk * * < 9 ./2Rk mN

Further we have, by arguing as for [5, Eq. 2.13],

_____R f 2 (Vt) 2 "
Ps( f exp- 8 R for s4 > p and d(s,t)> R.

Observing that x exp{-Cx2} <(2C) - 1/ 2 and taking o corresponding to
C=R2 /(48k) in (2.2) we thus obtain, by (2.4) and (2.15), for s C N ,

Z i.ts,t

t=2 n=O {tECN: <,p*'<t+j, a,(n)<p(.q.t)<e.(n+l), r(s,t)>O}

p exp{ R2 (:t) 2  exp { r }
t 1248k r(s, t)

V-/-7 R2 Z .. MS,(s,Q.(n+))(a/(e + 1))

t=2 {n>O: a(s,g.(n))>O}

{ R 2 e2  
__ C

xexp - 24

<- v/ R2 l3(w. Ns,(,.(.+,l))(R)exp a(s, e.(n))

00

x KINo.(R/3) Z(8R(e+ 1)/a)- log K /log exp { 2e2

t=2

7



Since Ztecrn E(Vt) 5 Ns,(t,m)(a/um)f(um,) < 00 so that, by (2.16),

limN-. ZtE:CIVC () = 00, we readily deduce, by (2.2) and symmetry,

(2.20) liMN-.~(E(at)ECk,2 't )/(ZECv !fpt)) 2 = 0 for a <a,.

Clearly we have, by (2.12) and (2.15), for s ECMI

{tECMN: (s,t)EC ,J N'

00

00

t=1

and using (2.11) and symmetry we thus get (since ZtEC' - )

(2.21) ! -N....0,0)CC3 P't)/(tECN !EpV)) 2 = 0 for a< a,.

Further we have, for s E C,, by [12, Theorem 4.2. 1] and using (2.4),
(2.15) and the facts that W, >2 and that xO exp{-CX2}<(03/(2Q/1'/2 '

00

r~s, t)exp .)- kN

00 mix1)W

t=2 v/2 7raJ
00 A'TT(I(J1)V,~ 2  (f2 - 1),p2

< C(ps) E5K~R(1)e exp -a

t=2 3V/7Fa (8R(e+ 1)P 8 1 /a) log i/logr 4

E log z -exp{f-(e 2 -3)},
t=2 vir(Re1/)g 

/ogI

and using symmetry we thus get (again since Z,,CN f(V't) -*00)

8



(2.22) hUMN--Jo(E(s,)ECN 1s,0)(tECN 4(Vf))2 = 0 for a < a,.

Fina!l, ry [12, Theorem 4.2.11, p.,tO for r(s, t)< 0, s 4 t, so that

(2.23) LmN-oo (E(8,)EC5 P8,t)/(tECN !(Vt))
2 < 0 for a<a,

and moreover

(99A\~. Z(8,tEC@ P34 lm(2.24) lir ') 2 = lira= 0 for a<a.

Combining (2.19)-(2.24) we see that (given a< a,) the left hand side
of (2.18) is at most 0(1/k), and so (2.18) follows from sending kToo.

COROLLARY 1. Assume the hypothesis of Theorem 1 and that d is a
metric and (T, d) locally compact. Then there exists an invariant (w.r. t.
+) Haar-measure p on (T, d):s Borel-sets with M(0))< oo for b E (0, V2-).
If further A is any version of this Haar-measure, then P{E(O)} =0 iff.f

(2.25) E 1+A(Or,)NoR 1 V inf (t))) 4 Vinf 0(t)) < con I tESn - ES

for some covering Sn = S(tn, rn), n = 1,2,..., of T with rn < R for all n.

PROOF: An easy argument yields d-continuity for (s, t) -+ t-s so that
(T, d, +) is a locally compact (Hausdorff) topological group and y exists
and is finite on compacts, where, by Remark 1 and local compactness,
06 is compact for 6 < vl'. Now observe that, by arguing as for (2.4),

No, (E) _ 1 + KINoR(R/3) 2 NoR(e) < 1+ KlNoR(R/3)2 A(0 6 )NoR (e)
3210a K,/logX No R(6) - 321og€', /log zA(OR)

for e > 0 and 6 < R, and so the sum (2.3) is finite when (2.25) holds.
Conversly (2.25) holds when the sum (2.3) is finite since, for 6 < R,
No(e ) < NoR(R/2)Mo, 2 ((R/2)A(2))No( ,2 )A(6)(6)

No,(e) -
K< No.(R/3)NoR (R/2)A(OR) < KNoR(R/3) 2 A(OR)2

16o K,/log zA(O(R/4)A6) - 161o9<,/log XA(OR/ 4 )(O)

The following local result improves or, [16] and [21] (but note that
they also treat non-stationary fields); we leave to the reader to find what
conditions in Section 1 one can omit without violating it's conclusion.

COROLLARY 2. Assume that there exists an RE(0, V-2') such that (2.1)
holds. Then there exist constants Ci, C2 (0, oc) such that

9



C1  PKsuptCO6 (t)>uI < C2 for uEJ and 6E[0,R].
NO,((1Vu)-1 )P(u) -

If in addition d is a metric, (T, d) is locally compact and A is a version of
the Haar-measure, then there exist constants CI, C2 E (0, oc) such that

C, < P I supt, 0) > U} 5C o E n EOII
- [I+A(O 6)NoR((lVu)_,)]-(t) _ C2  for uE.R and 6E[0,RJ.

For homogeneous spaces which in a certain sense are finite-dimensional
we have the following very simple criterion for (2.2) to hold.

PROPOSITION 1. If p(s+u, t+u) =p(q, t) for s, t, u E T and if there exists
a finction f: W -+ W. such that, writing B, for an open p-ball of radius E,

N1A+(A(R -Ng I+f( A)(R)

(2.26) 1 < lim N, (R) < lia ( < ,, - Nl;, (R) - A--co Nl;, (R)

then (2.2) holds if a(,) =- sup{OVr(s, t) : p(s, t)>} satisfies

(2.27) limA o a(A) log N13 (R) - 0.

PROOF: Take-, y,A>0 with 1+E < NB+,(Z )(R)/NB,(R) _ yfor x>A
and let p(0)=0, o(l)=A and q(n+l)=e(n)+f(o(n)) for n> 1, so that

(R)= -=,N(R) N3 (R)/NI, (R) > + (e)"' -- oo

as n--oo, which yields i e(n)=oo. Taking no such that T(p(n))
x log NrQf)(R) < C/2 for n > no we now readily obtain

SUPsE (- n>_o: a(s,0(n})>O} Ns,,(s,g(n+1)) (R) exp{f--Cla (s, 0(n) ))

< ." , Wu<(R) + E N Z°=o xp( (Rleog N13,(R)}

no E"°N ~,(R) + E., n0y No (,(R) -'(,+,_)-(n-1) < 00.

3. The Euclidian case. Theorem 2 sharpens [10] and [15]: They ne(ed
a stronger condition than (3.1) and only treat (and crucially need) V,(t) =

,/,(ItI) with ,/: [0, oo) -+ [0, oo) increasing (a meaningless notion on general
space), which makes (3.3) an integraltest and proofs totally different.

TIIEOREM 2. If {W(t)}tERn is separable stationary standard Gaussian. if

(3.1) limlt_ 8 1 o (0Vr(s. t)) log It-si = 0,

and if there exist constants a, b, Cl, C2 E (0, c) such that

(3.2) CIt-s < 1-r(s,t) 5 C2t-.sIr fC- 0<t-sl<6,

10



then E(4O)E-F with P{.E(ak)1 zero or one for each ObETI and moreover,
writing A for the Lebesgue measure over R", we have P{E(0A)}=0 iff

(3.3) , [1 +A (O j () V tinf ?P(t)) no j(1 V inf 0(t)) < o
n=1 k ES,, J ES,,

for some covering Sn =S(tn, rn), n =1, 2,..., of T with rn <_l for all .

PROOF: Here (T, p, +) = (Rn I . ,+) and R=. 1. Take A >0 with r(0, t)
<Ifor It I> ,A and suppose ItI+O as d(0, t) --+0. Then inf Jd(0, t) : It I

p} = 0 for some _0E (0,,A], and picking s with Is1 Ie!, and d(0, s) < -- we
get d (0,([.j + 1)s) < 1 so r (0,([Q]+ 1)s) > 1-. This is a contradiction
since I s I >A, and so, by homogenity, It -s I --+0 as d(s, t) --+0. Now
pick pe> 0 with I t- s I 6 for d(s, t) e,. Then (3. 1) readily yields that

(3.4) S1.1(t,(2C2 f- 1 /or6 2 /c) 9 S(t,) S1.(t, C-l/IE2/) for e <SAe.

Thus I and d-topologies coincide so we have stochastic continuity, I
boundeds are d-totally bounded, d is a metric, (T, d) is locally compact
and the Lebesgue measure is a Haar-measure on (T, d, +). Further it fol-
lows easily from (3.4), since S(t, 1) gS1. I(t, A), that K, _2 ,/, < No1 (e)
5 K22 n/1 ' for - E(0, 1] and Kx Xn Nj;,(1) :5 K2 X" for x >x0 , for some
KI, K 2 , xo E(0, oo). This proves (2.1), (2.26) and (using (3.1)) (2.27).
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